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A two-dimensional dynamical model of Ising spins is introduced. Since we were not able to define energy in
our system, we introduced an object called the disagreement function. This function controls the dynamics—
minimizing it locally we decide upon spin flipping. Amazingly, local minimization of the disagreement func-
tion can lead to an increase of its global value. We present the phase diagram of the system and show that
exactly the same initial conditions can lead the system to one of several, completely different final steady
states.
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I. INTRODUCTION

Almost a century ago physicists asked the question if
phase transitions could be explained by microscopic theory.
To answer this question, in 1920 Wilhelm Lenz proposed a
very simple microscopic model of interacting spins. Super-
vised by Lenz, Ernst Ising in his dissertation(1924) studied
the special case of a linear chain of magnetic moments[20]
which are only able to take two positions “up” and “down”
and which are coupled by interactions between nearest
neighbors. He showed that spontaneous magnetization can-
not be explained using this model in its one-dimensional
version. However, later it turned out that the two-
dimensional version of the model(known at present as the
Ising model) can explain the critical phase transition. This
taught us that very simple local interactions can lead to
qualitative changes on the macroscopic scale.

Rapid changes on the macroscopic scale(like phase tran-
sitions in physics) can be observed in various complex
systems—from biological(e.g., mass extinctions or specia-
tion) to financial (crashes, speculative bubbles) or social
(sudden social depression or euphoria). These changes are
usually unexpected and no obvious source of such a behavior
can be identified. In recent years physicists have started to
explain these “outside physics” phenomena[1,2] in terms of
microscopic interactions, like they have been doing for
physical systems.

Recently we have proposed a simple model[3] to de-
scribe how opinions spread in human society. The crucial
difference of our model compared to voter or Ising-type
models is that information flows outward[4]. In our model
each site of a one-dimensional lattice carries an Ising spin.
Two neighboring parallel spins—i.e., two neighboring
people sharing the same opinion—convince their neighbors
of this opinion. If they do not have the same opinion, they
bring their neighbors to the opposite position. Our model,
named by Stauffer the “Sznajd model,” has been modified
and applied in sociology[5,6], marketing[7,8], finance[9],
and politics [10,11]; see also reviews by Stauffer[4] and

Schechter[12]. At the same time the model posed new chal-
lenges to statistical physics[14]. Several interesting results
have been found recently. Stauffer and de Oliveira[13]
showed that the density of never-changed opinions in the
Sznajd model decays in time as 1/tu with u=3/8 for the
one-dimensional chain, which is compatible with Ising
model results. However, in higher dimensions the exponent
differs from the Isingu. Slanina and Lavicka[14] solved our
model analytically on a complete graph, which is a mean-
field-like treatment, and showed the existence of a phase
transition, which was earlier found using Monte Carlo simu-
lations [15].

Because the outflow of information seemed to be crucial,
we decided to introduce a generalized model which kept our
old dynamics(the information flows outward), but intro-
duced a function controlling whether a spin should be flipped
or not. The model consists of two components(hence the
name TC model) [16]:

(i) Dynamics—the information flows outward; i.e., a pair
of spinsSi andSi+1 is chosen to change their nearest neigh-
bor.

(ii ) Disagreement function—the change of spins is con-
trolled by a certain function, which is locally minimized.

In the original one-dimensional Sznajd model thesi
−1dth spin is influenced by its two neighbors and the steady
state of the system is degenerated—with equal probability
the ferromagnetic or the antiferromagnetic state is reached.
The one-dimensional TC model was proposed to generalize
the one-dimensional Sznajd model. For a system in which
the si −1dth spin interacts with its two neighbors the Hamil-
tonian can be written in the following form:

H = − J1o
i

Si−1Si − J2o
i

Si−1Si+1. s1d

For J1.0 and J2,0 this is the well-known axial next-
nearest-neighbor Ising(ANNNI ) model introduced in[17],
which allowed the system to display frustration. We have
used this Hamiltonian to construct the disagreement function
E for the one-dimensional TC model[16]:

Ei−1 = − J1Si−1Si − J2Si−1Si+1, s2d

for any value of coupling constantsJ1 andJ2. This allows us
to reproduce steady states from the original Sznajd model
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(for uJ1u, uJ2u). For such values, a double degeneration of the
steady state was observed—the ferromagnetic and the anti-
ferromagnetic states were equally probable. It should be
noted that this degeneration was obtained even for both cou-
pling constants greater than zero. The full phase diagram of
the one-dimensional model consists of four different phases:
ferromagnetic, antiferromagnetic, antiphase(2,2), and a
double-degenerated one[16]. In this paper we will introduce
a two-dimensional version of the TC model. We will show
that in this case the number of possible final states increases
and that the knowledge of the initial state does not help much
in predicting the final state. We will also show how local
minimization of the disagreement function influences the
global disagreement function.

II. MODEL

We investigate a system of Ising spins on a square lattice.
The one-dimensional rule is applied to each of the four
chains of four spins each, centered about two horizontal and
two vertical pairs of light balls in Fig. 1. The algorithm is the
following:

(i) Choose at random a spin—e.g.,Si,j—which defines a
232 box of spinssSi,j ,Si,j+1,Si+1,j ,Si+1,j+1d, light balls in
Fig. 1.

(ii ) Calculate the disagreement function for each of the
eight nearest neighbors of the box defined in point(i) (chess-
board colored balls in Fig. 1)—e.g., forSi−1,j:

Ei−1,j = − J1Si−1,jSi,j − J2Si−1,jSi+1,j . s3d

(iii ) Calculate the disagreement function for each of the
eight nearest neighbors of the box in the case of a flipped
spin—e.g., forSi−1,j:

Ei−1,j8 = J1Si−1,jSi,j + J2Si−1,jSi+1,j . s4d

(iv) For each of the eight spins check the difference in the
disagreement function—e.g., forSi−1,j :Ei−1,j8 −Ei−1,j. If it is
smaller than zero, then flip the spin(e.g.,Si−1,j); otherwise,
leave it unchanged.

Recently the following question was raised by Spirinet
al. [18,19]: What happens when an Ising ferromagnet, with
spins endowed with Glauber dynamics, is suddenly cooled
from a high temperature to zero temperature? The first ex-
pectation was that the system should eventually reach the
ground state. However, this is true only for a one-
dimensional system. On a square lattice, there exist many
metastable states that consist of alternating vertical(or hori-
zontal) stripes of widthsù2. These arise because a straight
boundary between up and down phases is stable in zero-
temperature Glauber dynamics.

The same question can be asked in respect to the TC
model. We start from a completely random system and moni-
tor the evolution of the system.

III. STEADY STATES AND THE PHASE DIAGRAM

In the TC model we change the spin according to its two
neighbors—say,Si−1,j according toSi,j and Si+1,j. We can
easily calculate disagreement functionEi−1,j, which we de-
note byE− for simplicity:

(i) ↑↑↑, ↓↓↓, E 1
−=−sJ1+J2d,

(ii ) ↑↑↓, ↓↓↑, E 2
−=−J1+J2,

(iii ) ↑↓↑, ↓↑↓, E 3
−=J1−J2,

(iv) ↓↑↑, ↑↓↓ E 4
−=J1+J2.

The definition of the model(change ofSi−1,j according to
Si,j and Si+1,j) implies that only two transitions are possible
E 1

−↔E 4
− andE 2

−↔E 3
−. This defines four phases

(A) uJ1u,J2:E 1
−,E 4

−,E 3
−,E 2

−,
(B) uJ2u,J1:E 1

−,E 4
−,E 2

−,E 3
−,

(C) J2, uJ1u :E 4
−,E 1

−,E 2
−,E 3

−,
(D) J1, uJ2u :E 4

−,E 1
−,E 3

−,E 2
−.

This means that, e.g., in phaseA the ferromagnetic and the
antiferromagnetic triplets are preferable—i.e.,↓↑ ↑ → ↑ ↑↑,
↑↑ ↓ → ↓ ↑↓. Thus in one dimension we expect a double de-
generation of the steady state: the ferromagnetic and the an-
tiferromagnetic steady states should be possible. Indeed,
Monte Carlo simulations confirm this expectation.

In the two-dimensional case, the one-dimensional rule is
applied to each of the four chains of the 232 box. For this
reason the two-dimensional steady states are a combination

FIG. 1. Transformation of the one-dimensional TC model to two
dimensions. The one-dimensional rule is applied to each of the four
chains of the 232 box (light balls).

FIG. 2. All possible steady states of the two-dimensional TC
model. For example, in the phaseA we should get steady states
consisting of ferromagnetic and antiferromagnetic chains and so
there are four possibilities: (a) all chains are ferromagnetic,(b) all
chains are antiferromagnetic,(c) there are ferromagnets in columns
and antiferromagnets in rows or vice versa, or(d) chains of ferro-
magnets alternate antiferromagnetic chains. PhaseC consists of
(2,2) antiphase chains, which gives two possibilities in two dimen-
sions(e) or (f).
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of one-dimensional steady states. All possible steady states
are presented in Fig. 2 and complete the phase diagram in
Fig. 3. The same results can be also obtained from Monte
Carlo simulations.

The most interesting is, of course, phaseA in which four
qualitatively different phases are possible. Moreover, knowl-
edge of the initial state does not allow us to predict the final
state of the system. In the next section we will show what the
probability is of each final state in the case of a random
initial state.

IV. PREDICTING THE FINAL STATE OF THE SYSTEM

An investigation of the two-dimensional ferromagnet un-
der Glauber dynamics showed that in zero temperature many
final states exist and they all consist of alternating vertical or
horizontal stripes[18,19]. This arises because in zero-
temperature Glauber dynamics a reversal of any spin along
the boundary raises the energy. In the TC model the disagree-
ment function together with new local dynamics leads the
system to one of several, structurally different steady states
(see Fig. 2). The interesting point is that even if we always
start from exactly the same random initial state, we can reach
all possible steady states of a given phase. But can we predict
the final state of the system? One could guess that the prob-
ability of reaching a certain steady state depends on the dis-

agreement function of the state, because the disagreement
function plays the role of energy in the TC model. Let us first
define the global disagreement function as

E =
1

N
o
i,j

Ei,j , s5d

whereN is the number of spins in the system andEi,j is the
local disagreement function calculated from Eq.(3). The glo-
bal disagreement function can be calculated easily for each
possible steady state. One could expect that the most prob-
able state has the lowest value ofE. We have made Monte
Carlo (MC) simulations for random initial conditions and
have found that this is not true; see Table I.

This result shows that in the TC model the probability of
the steady state does not depend on its global disagreement
function, but only on the number of equivalent configura-
tions connected with each type of the steady state. For ex-
ample, there are only two configurations for the
ferromagnet—all spins up or all spins down, but four differ-
ent configurations for typec and eight configurations for type
d (see Fig. 4).

The results presented in Table I are quite surprising, be-
cause each flip of spin is connected with local minimization
of the disagreement function. Thus, it is very interesting to
look at the time evolution of the global disagreement func-
tion. In Fig. 5 we present a sample plot forJ1=1 andJ2=2
(phaseA). The time evolution was obtained from Monte
Carlo simulations for a 1003100 square lattice. Averaging
was done over 104 samples. Initially all evolutions ofE are
the same. Suddenly, after several hundred Monte Carlo steps,
the system “decides” to which steady state it will evolve.

TABLE I. The global disagreement function(calculated analyti-
cally) and probabilities of reaching the steady state(from Monte
Carlo simulations) in the phaseA.

Type E EsJ1=1,J2=2d Probability

a −2sJ1+J2d −6 1/8

b 2sJ1−J2d −2 1/8

c −2J2 −4 1/4

d −2J2 −4 1/2

FIG. 3. Phase diagram for the two-dimensional TC model.

FIG. 4. All equivalent configurations of a type-d steady state.

FIG. 5. Time evolution of the global disagreement function in
phaseA. The dotted line presents the evolution to the antiferromag-
netic state, the solid line to the both type-c and -d steady states, and
the dashed line to the ferromagnetic state. Initially all evolutions are
the same then, after several hundred Monte Carlo steps the system
“decides” on one steady state.
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Surprisingly, even exactly the same initial states can evolve
to different steady states. In the case of the antiferromagnetic
steady state, the global disagreement function initially de-
creases as one would expect. However, after some time it
starts to increase, which is quite astonishing.

V. SUMMARY

We proposed a two-dimensional version of the TC model.
Simulations and analytical reasoning showed that the TC
model depending on two interaction coefficientssJ1,J2d can
eventually lead the system to one of four phases:A (degen-
erated, in which four qualitatively different steady states ex-
ist), B (ferromagnetic), C (double degeneration), andD (an-
tiferromagnetic). It should be also noted that in our model a
degeneration of the steady state is possible even if both cou-
pling constants are greater or smaller than zero, while in the
ANNNI model coupling constants need to have opposite
signs in order to obtain degeneration.

Interestingly, the same initial state can evolve to several
different limiting structures and we cannot predict which fi-

nal state will be reached. In the TC model the probability of
reaching a final state does not depend on its disagreement
function, but only on the number of possible representations
of the state. Thus, for example, in phaseA the ferromagnetic
state has the lowest disagreement function, yet it is highly
improbable; see Table I. Although the disagreement function
is minimized locally, the global disagreement function—
defined as a sum of the local disagreement functions—can
increase during the evolution.

Finally, the TC model is an example of what can happen
when we introduce a function which has only local meaning
and try to predict what happens to the whole system. We
have to leave aside all our physical intuitions, although the
model looks very “physical” at first sight.
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